

240 Combi BF

WALL MOUNTED COMBINATION BOILER FOR CENTRAL HEATING
AND MAINS FED DOMESTIC HOT WATER

INSTALLATION AND SERVICING INSTRUCTIONS

GC NUMBER 47 311 10

BOILER OUTPUT

Automatic Modulating Control
To Domestic Hot Water and Central Heating
Minimum 9.2 kW (31,400 Btu/h)
Maximum 24.0 kW (82,000 Btu/h)

IMPORTANT: THIS APPLIANCE IS FOR USE WITH NATURAL GAS ONLY

THESE INSTRUCTIONS APPLY IN THE UK ONLY

THESE INSTRUCTIONS ARE TO BE LEFT WITH THE USER OR AT THE GAS METER

Contents

1.	Installation Regulations	Page 2
2.	General Information	Page 2
3.	Data Technical	
4.	Siting the Appliance	Page 5
5.	Siting the Flue Terminal	
6.	Air Supply	Page 7
7.	Sealed System	
8.	Open Vent Primary Water System	Page 8
9.	Domestic Hot Water	

10.	Electrical	Page 10
11.	Installation	Page 14
12.	Commissioning	Page 17
	Instructions to the User	
14.	Inspection and Servicing	Page 19
15.	Replacement of Parts	Page 21
16.	Short Parts List	Page 28
17.	Operational Flow Diagram	Page 29
18.	Fault Finding	Page 31

1. Installation Regulations

1.1 Gas Safety (Installation and Use) Regulations 1984

All gas appliances must be installed by a competent person in accordance with the above regulations. Failure to install appliances correctly could lead to prosecution.

- **1.2** The manufacturers notes must not be taken,in any way,as overriding statutory obligations.
- 1.3 The compliance with a British Standard does not, of itself, confer immunity from legal obligations. In particular the installation of this appliance must be in accordance with the relevant requirements of the Gas Safety (Installation and Use) Regulations 1984 as amended, current IEE Wiring Regulations, local Building Regulations, Building Standards (Scotland)(Consolidation) and byelaws of the local Water Company. Health and Safety Document No. 635 (Electricity at Work Regulations). It should be in accordance with the relevant recommendations of the following British Standards.

BS 6798:1987 Specification for installation of gas fired hot water boilers of rated input not exceeding 60 kW.

BS 5449:1990 Central Heating for Domestic Premises.

BS 5546:1990 Installation of gas hot water supplies for domestic purposes.

BS 5440:1:1990 Flues and Ventilation for gas appliances of rated input not exceeding 60 kW: Flues.

BS 5440:2:1989 Flues and Ventilation for gas appliances of rated input not exceeding 60kW: Air Supply.

BS 6891:1988 Installation of low pressure gas pipework installations up to 28 mm (R1).

1.4 To ensure that the installation will perform to the highest standards, the system and components should conform to any other relevant British Standards in addition to those mentioned in the instructions.

2. General Information

- 2.1 This appliance is not suitable for external installation.
- **2.2** The appliance controls are set to provide a maximum output of 24 kW for the domestic hot water and a central heating load of up to 16.1 kW.
- 2.3 The appliance has a permanent pilot.

2.4 PRINCIPLE APPLIANCE COMPONENTS See Fig. 1.

A low thermal capacity Gas to Water heat exchanger.

A Water to Water heat exchanger to provide domestic hot water. Fully modulating controls in the central heating and domestic hot water modes of operation.

An expansion vessel, pressure gauge and pressure relief valve.

A by-pass for the central heating system.

Temperature safety cut-out controls.

A water flow regulator.

A standard horizontal flue assembly giving flue lengths from 229 mm to 420 mm.

An optional extra extension flue kit to provide for flue lengths up to 559 mm long.

An optional facia mounted programmer instead of the standard Operating Switch.

2.5 ELECTRICAL SUPPLY

Mains supply: 240V ~, 50 Hz, 150 watts. External fuse 3A. Internal fuses: T2A (F1) and T315mA (F2).

2.6 GAS SUPPLY

The boiler requires 2.81 m³/h (99.3 ft³/hr) of gas. The gas meter and supply pipes must be capable of supplying this quantity of gas in addition to the demand from any other appliances being served. The table below gives an indication of limiting gas pipe lengths and the allowance to be made for fittings. Refer to BS6891 for further information.

The meter governor should deliver a dynamic pressure of 20 mbar (8in wg.) at the appliance.

The complete installation, including the gas meter, must be tested for soundness and purged. Refer to BS 6891.

GAS	Pipe Diameter		
3	(mm)		
Gas I			
2.9	-		15
8.7	5.8	4.6	22
18.0	12.0	9.4	28

Note:

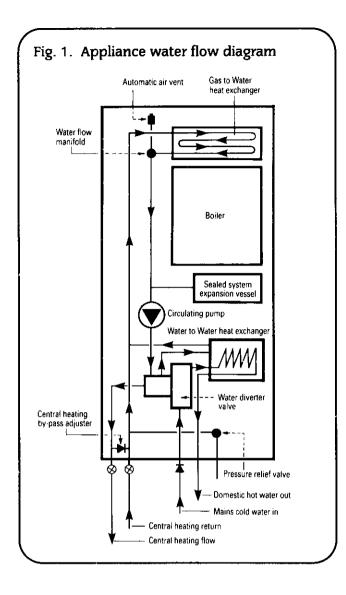
Each fitting used in the gas line from the meter is equivalent to a length of straight pipe which must be added to the straight pipe length to give the total length.

ie: Elbow = 0.5 metres, Tee = 0.5 metres, 90° Bend = 0.3 metres.

2.7 PACKING

The appliance and flue components are packed in separate cartons.

2.8 GENERAL INSTALLATION


The appliance is supplied for connection to a sealed system but is suitable for use with an open vent system. The connections are supplied as an optional kit.

The specified ventilation openings made into a wall or compartment door must not be obstructed.

If the appliance is to be fitted into a compartment then the compartment must conform to the requirements of BS 6798: 1987: Section 6.

Do not place anything on top of the appliance.

The clearances specified for servicing must be maintained.

2.9 FLUE

The appliance has a room-sealed balanced flue system to the

The standard flue assembly length is from 240 mm to 420 mm. An extention flue length from 420 mm to 559 mm is available.

A terminal guard, Type GC 393 545, is available from Tower Flue Components, Vale Rise, Tonbridge, TN9 1TB.

Do not allow the flue terminal fitted to the outside wall to become obstructed or damaged.

2.10 CONTROLS

The electronic control system and gas valve modulate the heat input in response to the central heating and domestic hot water temperature settings between minimum and maximum.

The Operating Switch provides for the selection of domestic hot water only (WATER) or central heating and domestic hot water (HEATING & WATER) or OFF.

A facia mounted programmer is available as an optional extra. A remote mounted programmer may be connected to the appliance

The integral facia displays indicate the status of the appliance.

There is provision for the connection of a mains voltage room thermostat and/or a frost thermostat.

The electronic controls prevent rapid cycling of the appliance in the central heating mode.

2.11 SYSTEM NOTES

WARNING

Check that no dirt is left in either the gas and water pipework as this could cause damage to the appliance. Thoroughly flush the heating system and the cold water mains supply. Purge the gas supply before finally connecting the appliance..

The water pipe connections throughout a sealed system must be capable of sustaining a pressure of upto 3 bar.

Radiator valves must conform to the requirements of BS2767 (10): 1972.

The relief valve discharge must be directed away from any electrical components or where it would cause a hazard to the user.

A drain cock to BS 2879 must be fitted to the lowest point of the system.

For circuit design purposes it is important that due note is taken of the information given in Table 3 relating to the available pump head.

2.12 SHOWERS, BIDETS, TAPS AND MIXING VALVES

Hot and cold taps and mixing valves used in the system must be suitable for operating at a mains pressure of up to 10 bar.

Thermostatically controlled or pressure equalising shower valves will guard against the flow of water at too high a temperature.

Hot and cold mains fed water can be supplied direct to an overrim flushing bidet subject to local Water Company requirements. With all mains fed systems the flow of water from the individual taps will vary with the number of outlets operated simultaneously and the cold water mains supply pressure to the property. Flow balancing using 'Ball-o-Fix' type valves is recommended to avoid an excessive reduction in flow or even starvation to individual outlets. For further information contact Worcester Heat Systems Ltd.

2.13 SAFETY CONSIDERATIONS

The appliance must not be operated with the boiler inner casing cover removed.

Work must not be carried out on the appliance without the gas and electricity supplies being switched off.

Checks must be made to ensure that the ventilation openings made into walls and partitions are of the correct size and are not obstructed.

2.14 OPERATION

Domestic Hot Water: With a demand for hot water the burner will light at its maximum setting and then automatically adjust its output to maintain the temperature rise of the delivered water. When hot water is no longer required, the burner will extinguish. The pump will continue to run for a short period to dissipate the residual heat from the appliance.

Central Heating: With a demand for heating the burner will light at its minimum setting and gradually increase to give the maximum output. The output of the appliance is then automatically adjusted to maintain the temperature of the system. The output can reduce down to a minimum of 9.2 kW. If the system no longer requires even the minimum output to maintain the desired room temperature the burner will extinguish. The pump will continue to run to dissipate the residual heat from the appliance. The appliance will remain off for a fixed period of two minutes before re-lighting to automatically meet the system requirements.

Domestic Hot Water and Central Heating: The appliance will supply heat to the central heating system as required. A demand for domestic hot water at a tap or shower will override the central heating requirement for the period of the domestic hot water demand. When hot water is no longer required the burner will extinguish and the appliance will return to the central heating state and its normal mode of operation. The pump will continue to run to dissipate the residual heat from the appliance as necessary.

3. Technical Data

NOMINAL BOILER RATINGS							
Output		Iı	nput		Setting Ssure	Gas	Rate
kW	Btu/h	kW	Btu/h	m bar.	in. wg.	m ³ /h	ft ³ /h
9.2	31,400	12.6	43,000	3.0	1.2	1.22	43.0
24.0	82,000	30.0	102,400	14.7	5.9	2.81	99.3

TABLE 3

TABLE 1

AVAILABLE PUMP HEAD							
Boiler Output		Н	ead	Min. Flow Ra		Temp. rise across heating flow	
kW	Btu/h	metres	feet	litres/min	gal/min	and return	
9.2	31,400	4.9	15.9	12.0	2.64	11°C (20°F)	
24.0	82,000	2.0	6.5	22.0	4.81	15°C (28°F)	

TABLE 2 - Flue Details

		mm	inches
Wall Hole Size	Width	365	14.4
	Height	265	10.5
Standard Flue – Minimum Len	240	9.5	
Standard Flue – Maximum Length		420	16.5
Extended Flue – Maximum Lei	ngth	559	22

The Data Plate is fixed to the control box casing.

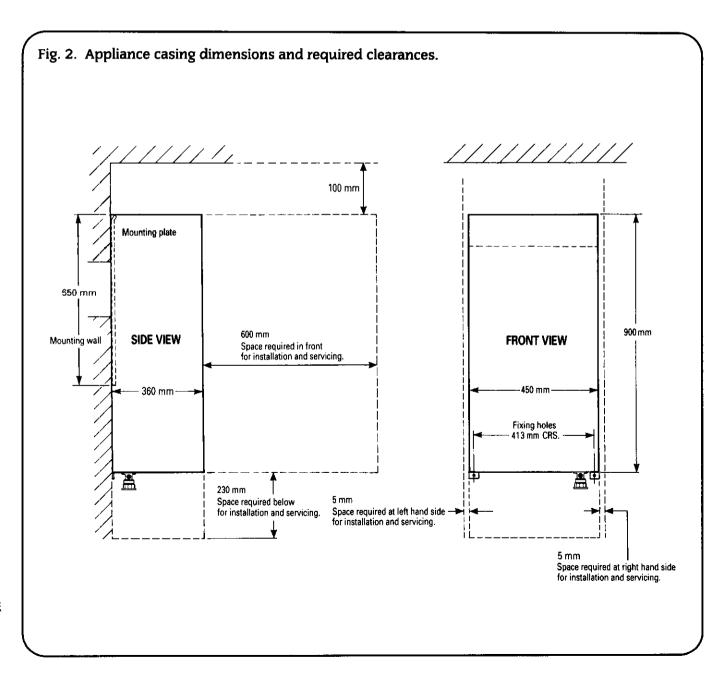
TABLE 4

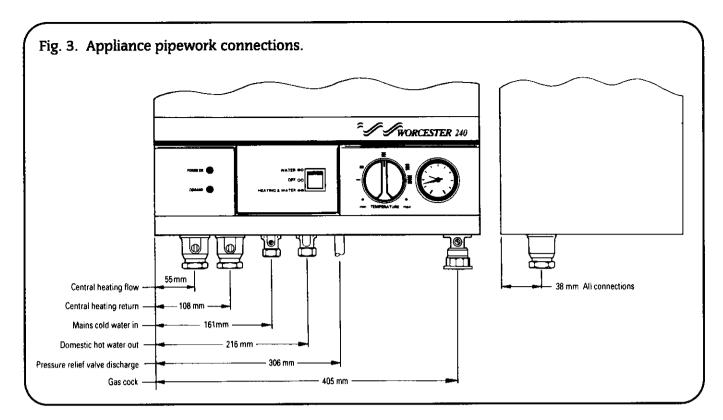
SPECIFICATIONS				
CENTRAL HEATING FLOW FITTING	22 mm Compression			
CENTRAL HEATING RETURN FITTING	22 mm Compression			
COLD WATER MAINS INLET FITTING	15 mm Compression			
DOMESTIC HOT WATER OUTLET FITTING	15 mm Compression			
GAS INLET FITTING	Rc1/2			
PRESSURE RELIEF VALVE DISCHARGE FITTING	15 mm Compression			
CASING HEIGHT	900 mm (35.4 in.)			
CASING WIDTH	450 mm (17.7 in.)			
CASING DEPTH	360 mm (14.2 in.)			
WEIGHT (including water)	48.7 kg (107 lb.)			
INSTALLATION WEIGHT	. 46.5 kg (102 lb.)			
PACKAGED WEIGHT	49.6 kg (109 lb.)			

TABLE 5

SPECIFICATIONS			
PRIMARY WATER CAPACITY	2.7 litres (0.6 galls.)		
MAXIMUM COLD SUPPLY PRESSURE	10 Bar (150 psi)		
MINIMUM COLD SUPPLY PRESSURE (WORKING) FOR MAXIMUM HOT WATER FLOW	1.6 Bar (23.5 psi)		
MINIMUM COLD SUPPLY PRESSURE (WORKING) TO OPERATE THE APPLIANCE	0.6 Bar (9 psi)		
MAXIMUM CENTRAL HEATING FLOW TEMPERATURE	Nominally 82°C (180°F)		
MAXIMUM STATIC HEAD (PRIMARY)	25 metres (81 ft)		
MIMIMUM STATIC HEAD (PRIMARY)	0.3 metres (1 ft)		
OUTPUT TO DOMESTIC HOT WATER	Modulating 9.2–24 kW (31,400–82,000 Btu/h)		
OUTPUT TO CENTRAL HEATING	Modulating 9.2–24 kW (31,400–82,000 Btu/h)		
MAXIMUM DOMESTIC HOT WATER FLOW RATE FROM THE APPLIANCE	Nominally 8.5 litres/min (\pm 15%) {1.87 gallons/min)		
EQUIVALENT DOMESTIC HOT WATER FLOW RATE TO GIVE A TEMPERATURE RISE OF 35°C	Nominally 9.8 litres/min (2.16 gallons/min)		

4. Siting The Appliance

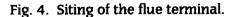

4.1 The appliance may be installed in any room although particular attention is drawn to the requirements of the current I.E.E. Wiring Regulations and, in Scotland, the electrical provisions of the Building Regulations applicable in Scotland, with respect to the installation of appliances in rooms containing baths or showers.


Where a room sealed appliance is installed in a room containing a bath or shower, any electrical switch or appliance control using mains electricity must not be able to be touched by a person using the bath or shower.

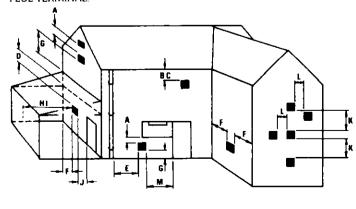
- 4.2 The appliance is not suitable for external installation.
- **4.3** The appliance does not require any special wall protection.
- **4.4** The wall must be capable of supporting the weight of the appliance. See Table 4.
- **4.5** If the appliance is to be fitted in a timber framed building, refer to the British Gas publication "Guide for Gas Installations in Timber Framed Housing".
- **4.6** The following clearances must be available for installation and for servicing. See Fig. 2.

	Installation	Servicing
Above	100 mm	100 mm
In front	600 mm	600 mm
Below	230 mm	230 mm
Right hand side	5 mm	5 mm
Left hand side	5 mm	5 mm

- **4.7** The appliance can be installed in a cupboard used for airing clothes provided that the requirements of BS 6798 and BS 5440:2 are strictly followed.
- **4.8** The airing space must be separated from the boiler space by a perforated non-combustible partition. Expanded metal or rigid wire mesh are acceptable provided that the major dimension is less than 13 mm. See BS 6798:1987.
- **4.9** No combustible surface must be within 75 mm of the casing. See BS476:4.
- **4.10** The distance between the inner face of a cupboard door and the cabinet front should not be less than 75 mm.
- **4.11** Always consider the possible need to disconnect the pipes from the appliance after installation.



5. Siting the Flue Terminal


See Fig. 4

- 5.1 The flue must be installed as specified in BS 5440:Part 1.
- **5.2** The terminal must not cause an obstruction nor the discharge cause a nuisance.
- **5.3** If the terminal is fitted within 850 mm of a plastic or painted gutter or within 450 mm of painted eaves then an aluminium shield at least 750 mm long should be fitted to the underside of the gutter or painted surface.
- **5.4** If a terminal is fitted less than 2 metres above a surface to which people have access then a guard must be fitted. See Section 2.9.

- **5.5** The terminal guard must be evenly spaced about the flue terminal and fixed to the wall using plated screws
- **5.6** In certain weather conditions a terminal may steam and siting where this could cause a nuisance should be avoided.
- **5.7** Take care to ensure that combustion products do not enter ventilated roof voids.

MINIMUM SITING DIMENSIONS FOR POSITIONING THE BALANCED FLUE TERMINAL. $\stackrel{\bullet}{\mathbf{1}}$

TERMINAL POSITION	MIN. DISTANCE
A—Directly below an openable window or	
other opening e.g. air brick	300 mm (12in.)
B—Below gutters, soil pipes or drain pipes	300 mm (12in.)
C— Below eaves	300 mm (12in.)
D—Below balconies or car port roof	600 mm (24in.)
E— From vertical drain pipes and soil pipes	75 mm (3in.)
F— From internal or external corners	600 mm (24in.)
G—Above ground, roof or balcony level	300 mm (12in.)
H—From a surface facing a terminal	600 mm (24in.)
 From a terminal facing a terminal 	600 mm (24in.)
I— From an opening in a car port (e.g. door	
window) into dwelling	1200 mm (47in.)
K— Vertically from a terminal on the same wall	1500 mm (59in.)
L— Horizontally from a terminal on the same	
wall	300 mm (12in.)
M-From door, window or air vent (achieve	
where possible)	300 mm (12in.)

6. Air Supply

- **6.1** The appliance does not require a separate vent for combustion air
- **6.2** Installations in cupboards or compartments require permanent vents for cooling purposes, one at high level and one at low level, either direct to outside air or to a room. Both vents must pass to the same room or be on the same wall to the outside air.
- **6.3** There must be sufficient clearance around the appliance to allow proper circulation of ventilation air. The clearances required

for Installation and Servicing will normally be adequate for ventilation. See Section 4.6.

6.4 The minimum free areas required are given below.

Position of air vents	Air from the room	Air direct from outside
High Level	270 cm². (42 in².)	135 cm². (21 in²)
Low Level	270 cm². (42 in².)	135 cm². (21 in².)

6.5 Refer to BS 6798 and BS 5440:2 for additional information.

7. Sealed System

See Figs. 5 and 6

- **7.1** The system must comply with the requirements of BS 6798 and BS 5449:1.
- **7.2** The appliance must not be operated without the system being full of water, properly vented and pressurised.
- **7.3** The pressure relief valve operates at 3 bar (45lb/in²). The discharge must be directed away from electrical components or where it might be a hazard to the user.
- 7.4 The pressure gauge indicates the system pressure which must be maintained.
- **7.5** The 10 litre expansion vessel is charged to 0.5 bar and is suitable for a static head of 5 metres (17.5ft). The pressure can be increased if the static head is greater than 5 metres (17.5ft).
- **7.6** With an initial system pressure of 0.5 bar, a system capacity of about 104 litres can be accommodated. Refer to BS 7074 Pt. 1 for more information. The charge pressure can be increased but with a decrease in system volume.

- 7.7 The filling point must be at low level. See Figs. 5 and 6.
- **7.8** Water loss must be replaced. See Fig 6. The connection should be made in the central heating return as close to the appliance as possible. See Figs. 5 and 6
- 7.9 The make-up vessel must be fitted with a non-return valve.
- **7.10** Repeated venting loses water from the system. It is essential that this water is replaced and the system pressure maintained.
- 7.11 Connections to the mains water supply must not be made without the authority of the local Water Company.
- 7.12 The pump is set at maximum and must not be adjusted.
- **7.13** Connections in the system must resist a pressure of up to 3 har
- 7.14 Radiator valves must conform to BS 2767(10):1972.
- 7.15 Other valves used should conform to the requirements of BS 1010.
- **7.16** To make use of the extra heating available from the appliance at the end of any demand, it is recommended that a single small radiator be left permanently open.

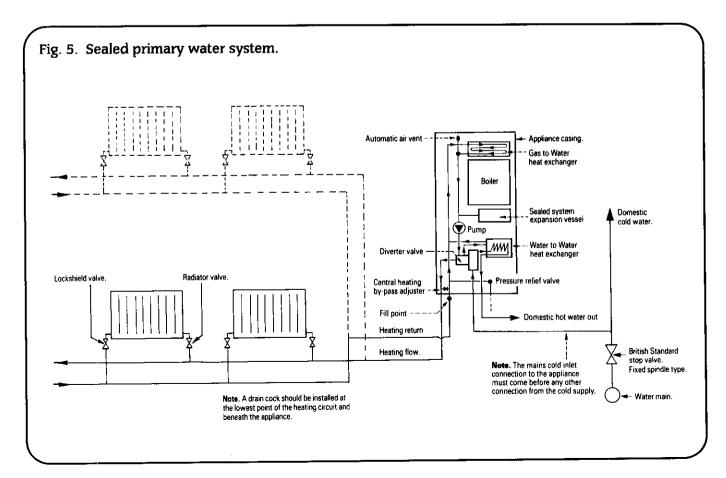
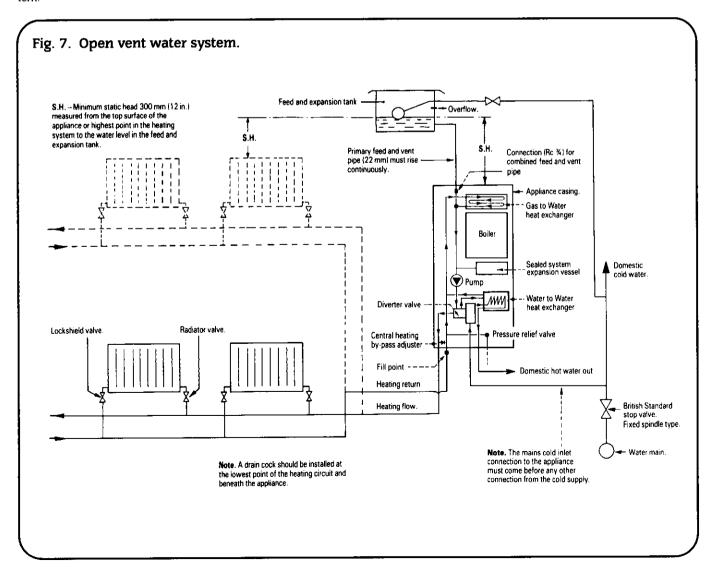



Fig. 6. System filling and make-up. Make up vessel Worcester Combi-Fill System Heating Return Auto Non return Heating Return air vent valve Non return Non return valve valve Hose union Ston 300mm (12in) min. cock above the highest Stop cock point of the system. Test cock Temporary hose Heating Return

8. Open Vent Primary Water System

See Fig. 7

- **8.1** The size of the flow and return pipework is given in Section 3 Table 4. The components required to connect the appliance to an open vent system are available as an optional extra kit.
- **8.2** The feed and expansion cistern should be arranged so that there is a minimum static head of 0.3 metres (12in.) above the top of the appliance or above the highest point in the heating circuit, whichever is the higher. See Fig. 7.
- **8.3** The feed and vent pipe should be 22 mm diameter and rise continuously from the appliance to the feed and expansion cistern.
- **8.4** A pressure relief valve is not required on an open vented system. If the pressure relief valve is left in position then a discharge pipe must be fitted which terminates in a position such that any water or steam discharge does not cause a hazard to the occupants or damage electrical components.
- **8.5** Air within the appliance will be expelled via the feed and vent connection or dissipated into the rest of the system which must be fitted with manual air vents at any high point.
- 8.6 The pump is set to maximum and must not be reset.
- **8.7** To make use of the extra heating available from the appliance at the end of any demand, it is recommended that a single small radiator be left permanently open.

9. Domestic Hot Water

- **9.1** The following are general requirements and, if necessary, reference should be made to the local Water Company before fitting the appliance.
- **9.2 MAINS COLD WATER INLET.** Devices capable of preventing the flow of expansion water must not be fitted unless separate arrangements have been made. An expansion vessel connection point (Rc¹/₂) is provided adjacent to the flow switch within the appliance.
- A Zilmet Z160 expansion vessel is the preferred type. A thread sealant compatible with potable water must be used.
- **9.3** The final 600 mm of the mains cold water connection to the appliance should be made in copper tube only.
- 9.4 The appliance is suitable for a mains pressure of up to 10 bar (150 lb/in²).
- 9.5 The appliance is fitted with a mains supply isolating valve.
- **9.6** The maximum domestic hot water flow rate is 8.5 litres/min. (± 15%) (1.87 gallons/min.).
- 9.7 In winter (when the mains inlet water temperature is lower) a reduced flow rate at the taps will be required to achieve the maximum hot water delivery temperature available in warmer weather.
- **9.8** It is a requirement that long pipe runs to the taps or shower should be insulated to prevent the rapid cooling of domestic hot water after a tap or shower has been turned off. Refer to BS5546:1990.

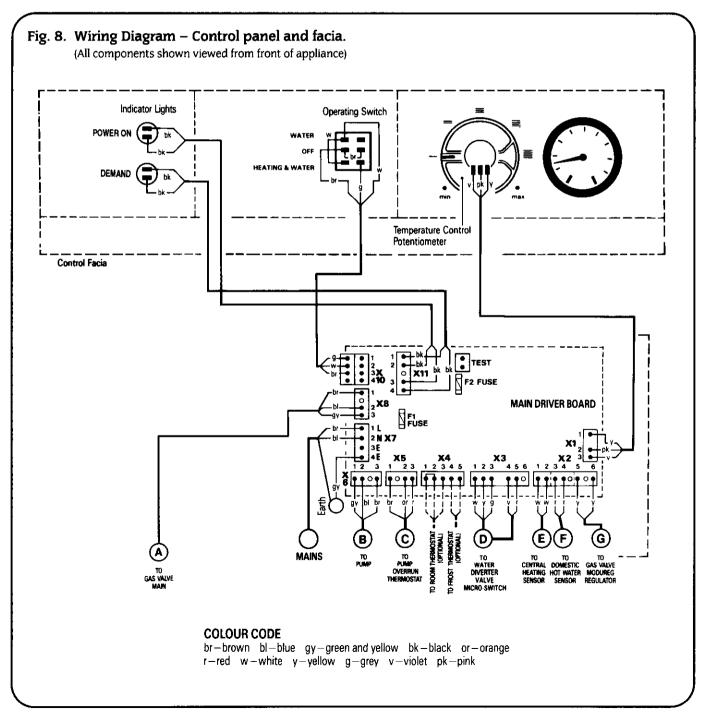
- **9.9** Hot and cold taps and mixing valves used with this appliance must be suitable for operating at a pressure of up to 10 bar (150 lb/in²).
- **9.10** No anti-syphonage arrangements are necessary except for some loose head showers. See also Section 9.11 following.
- 9.11 Thermostatically controlled or pressure equalising shower valves will guard against the flow of water at too high a temperature.
- **9.12** The head of a loose head shower must not fall closer than 25 mm (1 in.) above the top edge of the bath to prevent its immersion in bath water. Alternatively the shower must be fitted with an anti-syphonage device at the point of the flexible hose connections.
- 9.13 The supply of hot and cold mains water direct to a bidet is permitted, (subject to local Water Company requirements), provided that the bidet is of the over-rim flushing type. The outlet(s) should be shrouded and unable to have any temporary hand held spray attached. No anti-syphonage arrangements are necessary
- **9.14** As the maximum temperature of the Water to Water heat exchanger is limited by the control circuit, there is normally no need for water treatment to prevent scale accumulation. In exceptional circumstances a device to prevent scale formation can be fitted.

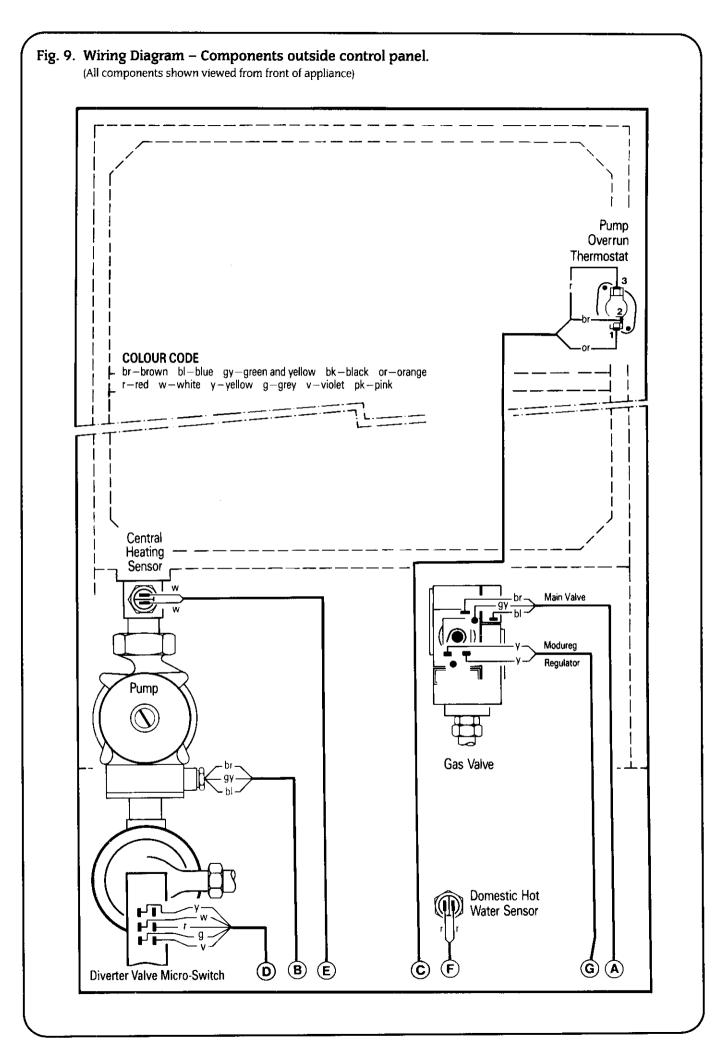
Installation of a scale inhibitor assembly should be in accordance with the requirements of the local Water Company. An isolating valve should be fitted to allow servicing. The water hardness can be determined using a standard test paper or by reference to the local Water Company.

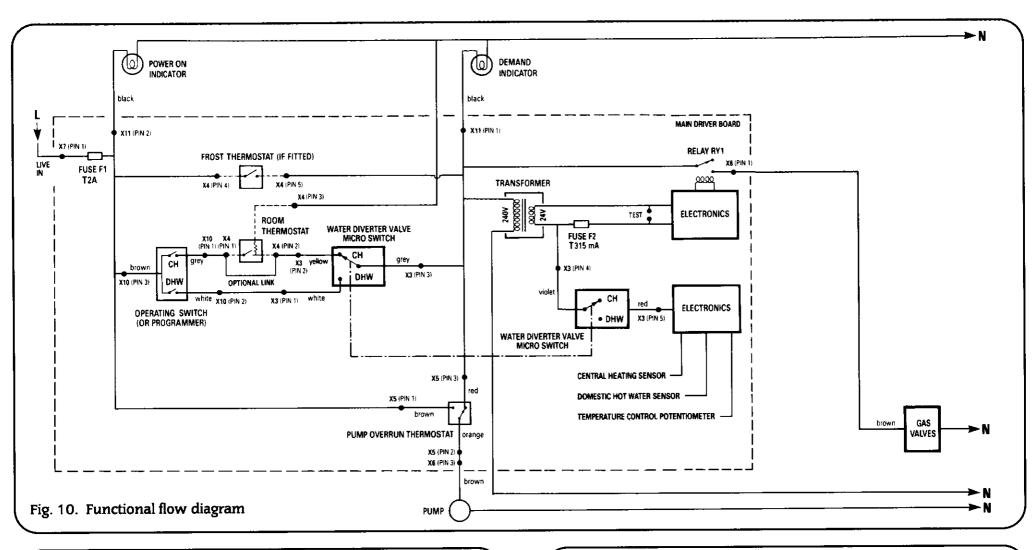
10. Electrical

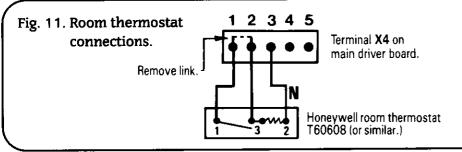
See Figs. 8, 9, 10,11 and 12.

10.1 MAINS SUPPLY. 240 V \sim , 50 Hz, 150 watts.


External Fuse 3A. Internal Fuses: T2A (F1) and T315mA (F2).


- 10.2 It must be possible to completely isolate the appliance.
- 10.3 Connection to the mains supply should be via a double pole isolator with a contact separation of 3mm in all poles and supplying the appliance and controls only.
- 10.4 The appliance must be earthed.
- 10.5 Mains Cable. 0.75 mm^2 (24 x 0.20 mm) to BS 6500 Table 16.


If a new cable is needed it must be connected into the terminals marked L (Brown or Red lead), N (Blue or Black lead) and \pm (Green/Yellow or Green) and be held securely in the cable clamp.


For access refer to Section 14. NOTE: Ensure the earth lead is longer than the live and neutral leads.

- 10.6 The wiring between the appliance and the electrical supply shall comply with current IEE Wiring Regulations and any local regulations which apply.
- 10.7 If a room and/or frost thermostat is to be fitted refer to Figs. 11 and 12. The thermostats must be suitable for use on mains voltage.
- **10.8** A facia mounted programmer is available as an extra. Instructions are supplied with the programmer kit.
- 10.9 A time switch or programmer can be fitted externally to the appliance.
- **10.10 SAFETY CHECK.** After installation or in the event of an electrical fault the electrical system shall be checked for short circuits, fuse failure, incorrect polarity of connections, earth continuity and resistance to earth.

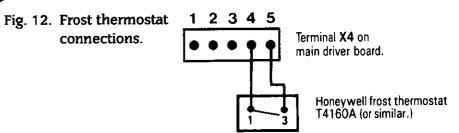
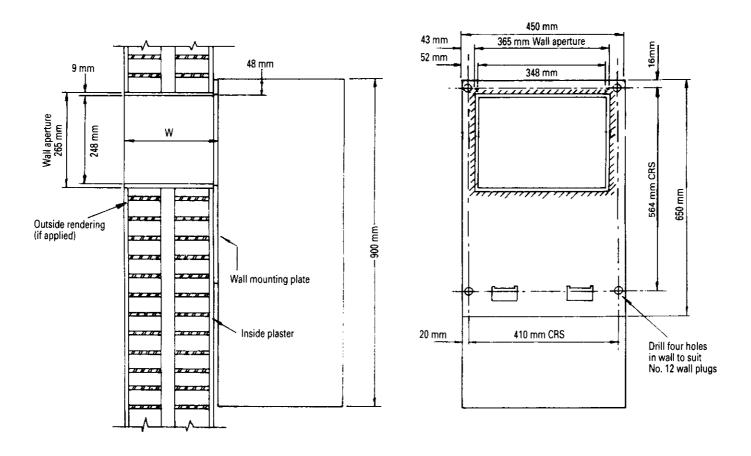
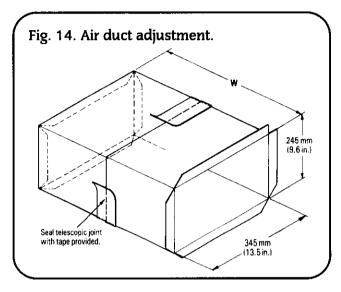
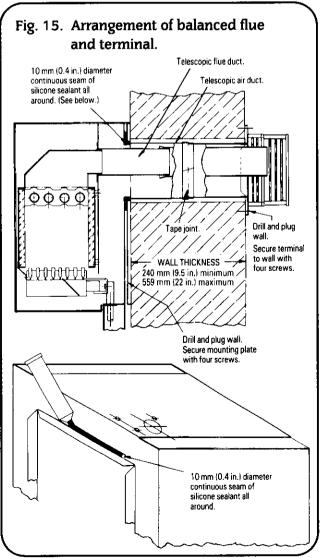



Fig. 13. Wall preparation.

11. Installation

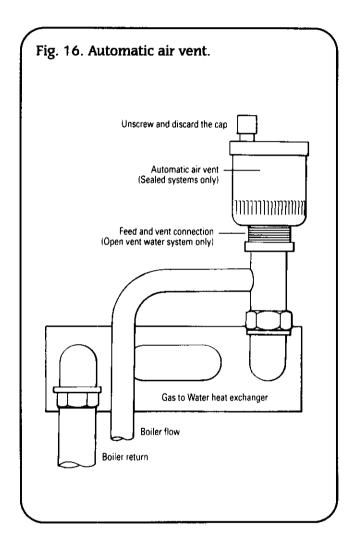

See figs. 2, 3, 13, 14 and 15.

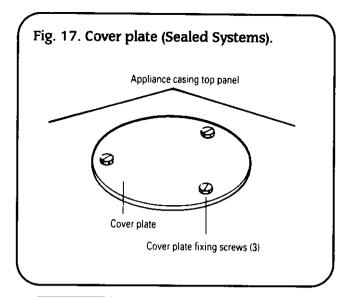

- Unpack the appliance and check the contents against the enclosed packing list.
- 2. Remove the cabinet:-
- (a) Remove the cabinet front cover by lifting and pulling forward
- (b) Remove the inner casing by unscrewing the four retaining screws.
- 3. From the carton containing the flue kit, remove the flue terminal, flue duct, air duct and the package containing:
 - 4 No. 8 wall plugs.
- 1 Roll ducting tape.
- 4 No. 8 wood screws
- 1 Tube of silicone sealant.

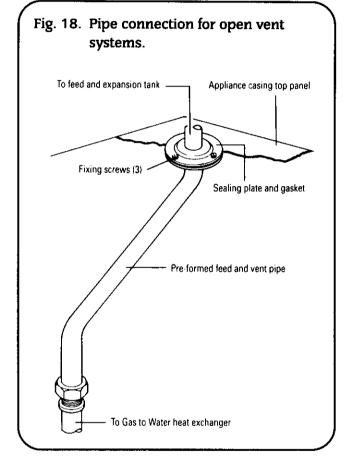
Separate the air and flue ducts from the terminal.

- Unscrew the two M6 nuts from inside the boiler casing holding the wall mounting plate onto the back of the boiler and remove the plate. Retain the nuts for future use.
- 5. From the dimensions given in Fig. 13 and, using the wall mounting plate as a guide, carefully mark the four mounting holes and the position of the balanced flue duct. Make sure the marking is accurate as the eventual squareness of the appliance will depend on this.
- 6. Drill the four retaining holes 70mm (2.75 in.) deep. fit the wall plugs supplied with the appliance.
- Cut the 36.5 mm (14.4 in.) x 265 mm (10.5 in.) hole through the wall for the balanced flue air duct. Make good any plaster or brickwork.
- Screw the wall mounting plate into position using the four No. 12 x 60 mm (2.5 in.) long screws provided with the appliance.
- Measure the distance from the inside edge of the mounting plate to the outside of the wall W. See Fig. 13.
- 10. Fit the air ducts together and adjust the total length until it corresponds with the **W** dimension. Using the ducting tape provided firmly tape the joint. See fig. 14.
- 11. From the inside, push the assembled air ducts through the aperture with the flanged end of the duct on the inside.
- Remove the two screws holding the flue hood in position and remove the flue hood.
- 13. Apply the silicone sealant in a bead approximately 10 mm (0.38 in.) diameter around the balanced flue locating spigot on the back face of the appliance. See Fig. 15.
- 14. Lift the appliance onto the mounting plate and locate the two M6 studs on the back plate into the two holes in the back of the casing. Locate the balanced flue spigot into the balanced flue air ducts. fasten the appliance with the two M6 nuts retained from instruction 4.
- 15. From the outside, make good the gap between the air duct and the brickwork. Fit the flue terminal to the air duct and mark the position of the four fixing holes. Drill four holes 5 mm (0.19 in.) diameter x 30 mm (1.25 in.) deep in the wall and fit the wall plugs provided.
- 16. Fix the flue terminal to the wall using the four No. 8 wood screws.
 - NOTE: The flue terminal is not symmetrical and the narrow air inlet gap is at the top. The top flange is marked TOP.
- 17. From inside the appliance enter the exhaust duct, plain end first. Engage the exhaust duct over the front half of the exhaust duct attached to the flue terminal. Slide in the exhaust duct and secure the flange with the screws but do not tighten.
- 18. Engage the spigot on the flue hood into the exhaust duct and slide into position on the heat exchanger. Fix into position with the two screws at the front.

19. Tighten the screws from instruction 17.


Sealed System:


Unscrew and discard the automatic air vent cap. See Fig. 16.


Open Vent System:

Undo the three screws securing the casing sealing plate. Discard the plate and retain the gasket. See Fig. 17. Remove and discard the automatic air vent. Fit the preformed pipe (optional extra) using the three screws, washers and gasket. See Fig 18. Connect the feed and expansion tank.

Remove the knock-out section in the top panel with a pair of pliers.

11.20 FINAL INSTALLATION

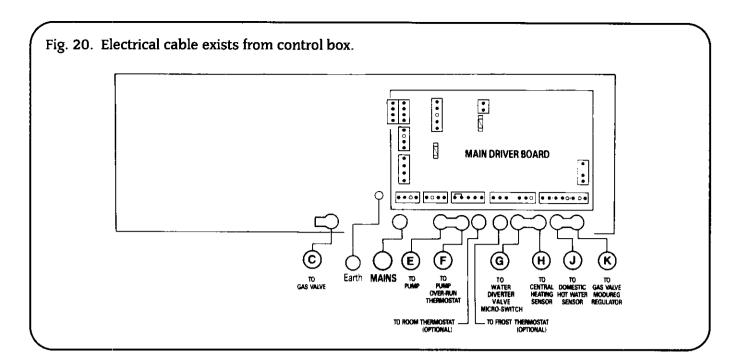
Check that all the water connections and the gas connection have been tightened.

If a facia mounted programmer is to be fitted, unscrew the upper two screws holding the facia panel in place and carefully lower the facia. See Fig. 19.

Unplug the Operating Switch from the terminal X10 on the main driver board. See fig. 8. Unscrew the four screws holding the switch plate and remove the complete Operating Switch assembly. Fit the programmer and tighten the four screws. Plug the programmer into terminal X10 on the main driver board.

Lower the control box as described in Section 14.3(d).

Connect the mains electrical supply to the appliance and connect any room and/or frost thermostats. The electrical leads to the room and frost thermostats must pass through the appropriate holes in the control panel and be fixed with the cable clamps provided. See Fig. 20. Refit the facia panel.


Test the gas supply pipework up to the appliance for soundness as indicated in BS 6891.

Refer to Section 12 for a full description of the filling, venting and, with a sealed system, the pressurising of the system.

If the appliance is not to be commissioned immediately, replace the cabinet front panel and control box. Check that the gas supply, the electrical supply and the water connections are all turned off.

If the premises are to be left unoccupied during frosty conditions, then commission the appliance as described in Section 12 and leave it under the control of the frost thermostat or leave operating continuously with the room thermostat set at 6°C.

Fig. 19. Appliance casing and control equipment fixings. Top panel fixing screws (2) Inner casing cover fixing screws (4) Control box fixing screws (2) Upper facia panel fixing screws (2) Lower facia panel fixing screws (2)

12. Commissioning

12.1 The appliance is despatched with the controls set to provide a maximum output for domestic hot water of 24 kW (82,000 Btu/h) and satisfy a central heating load of 16.1 kW (54,900 Btu/h).

The controls can be reset to increase the heat load capability to 24 kW (82,000 Btu/h). Refer to Section 12.4 – Central Heating. It is not necessary to set the output below 16.1 kW (54,900 Btu/h) as it is automatically modulated to satisfy lower heat loads.

Domestic Hot Water System. Check that the mains water supply has been fully flushed out at installation.

Central Heating System. Check that the central heating system has been fully flushed out at installation.

Gas Service . The complete system, including the meter, must be inspected and tested for soundness and purged as indicated in BS 6891.

12.2 APPLIANCE AND CENTRAL HEATING SYSTEM PREPARATION

Remove the cabinet front panel.

Check that the electrical supply and the gas service to the appliance are off. See Fig 3.

Check that all the water connections throughout the system are tight.

Open the system valves at the appliance. See Fig 3. Open all the radiator valves, fill the system and vent each radiator in turn.

On sealed systems the automatic air vent, (fixed to the flow manifold) will vent the appliance. Remove the boiler inner casing cover to check that the air vent cap has been removed. See Figs 16 and 19. Replace the cover immediately.

Check that the pressure relief valve operates by turning the knob anti-clockwise until it releases. Water should be expelled from the discharge pipe. See Fig. 21. Lower the control box to gain access. Refer to Section 14.3(d).

SEALED SYSTEMS ONLY

Set the Expansion Vessel Pressure

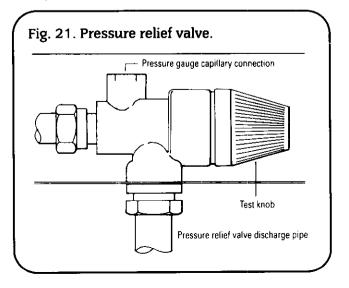
The charge pressure of the expansion vessel as despatched is 0.5 bar, which is equivalent to a static head of 5 metres (17 ft). The charge pressure must not be less than the static head at the point of connection. See Fig. 5. A Schraider type tyre valve is fitted to the expansion vessel to allow the charge pressure to be

increased if necessary.

Set the System Pressure

Fill the system until the pressure gauge shows 2.5 bar (37 lb/ins²) and check for water soundness. Release water from the system using the relief valve test knob until the System Design Pressure is obtained, up to a maximum of 1.5 bar.

System Design Pressure in bar = Static Head of the System in bar + 0.3


Note: 1 bar is equivalent to 10,2 metres (33.5 ft) of water.

Set the movable pointer on the pressure gauge to coincide with the indicating pointer giving a permanent record of the set system pressure.

If the pressure indicated on the pressure gauge is greater than 2.5 bar when operating at the maximum central heating temperature, an extra expansion vessel must be fitted to the system as close as possible to the appliance central heating return connection.

The appliance (as despatched) can accommodate a system volume of about 104 litres. Refer to BS 7074 Part 1. If the system volume is in excess of that accommodated by the expansion vessel fitted to the appliance then an extra vessel must be fitted as close as possible to the central heating return connection of the appliance.

Any extra vessel fitted must be pressurised to the same figure as the integral vessel. If the expansion vessel fails then the specified replacement must be fitted .

12.3 PROGRAMMER

Any programmer fitted on the appliance should be set up at this stage following the instructions sent with the programmer. The plug-in programmer will retain the setting for up to four weeks following an interruption in the electricity supply.

12.4 APPLIANCE OPERATION

Check that the electrical supply to the appliance is off.

Set the Operating Switch (or Programmer) to OFF.

Remove the inner casing cover. Refer to Section 14.3(b).

Disconnect the electrical connections from the Modureg actuator. Do not leave them unprotected. See Fig. 22. Turn on the gas supply and reconnect the electricity supply.

Push hard on the gas valve button and keep it pressed in. At the same time push the red igniter button. When it clicks the pilot (see through the inspection window) should light. If the pilot does not light immediately, press the igniter button repeatedly until it does. When the pilot has lit continue to hold the gas valve button in for a further 20 seconds, then release it slowly.

CAUTION: If the pilot does not stay alight, twist the gas valve button in the direction of the arrow. Wait for three minutes and repeat the operation until the pilot is lit. Continue to hold the gas valve button for thirty seconds, then release it slowly.

Test for gas soundness at the joint between the pilot pipe and the burner with leak detection fluid.

Observe the pilot flame. It should be about 20 mm long and envelope the spark electrode tip. If not, refer to Section 14.4. See Fig. 25. If the pilot still does not light, contact Worcester Heat Systems Service Department.

Replace the inner casing cover.

Reconnect the electrical connections to the gas valve.Loosen the burner pressure test point screw and connect a pressure gauge. See Fig 22.

Domestic Hot Water.

Switch on the electricity supply.

Set the Operating Switch (or Programmer) to **WATER** and fully open a hot water tap.

The boiler should light at a burner pressure of between 14 and 15mbar (5.6 and 6.0 in. wg.). If the burner pressure is low, check that the supply pressure at the gas valve inlet is at least 19 mbar (7.6 in. wg).

Note: The burner pressure is factory set and if (after checking that the supply pressure is sufficient) the correct pressure is not obtained then Worcester Heat Systems Service Department should be contacted.

Gradually close the hot tap and check that the burner pressure drops. Fully open the tap and check that the burner pressure rises. Fully close the tap and check that the burner goes off. The pump will continue running until the appliance has cooled to a preset temperature.

Set the Operating Switch (or Programmer) to OFF.

Central Heating

Check that all the radiator valves are open. Set the room thermostat and the Central Heating Temperature Control to maximum.

On sealed systems check that the system is pressurised and set to the required pressure as indicated on the gauge.

Set the Operating Switch (or Programmer) to **HEATING & WATER**.

The burner will light.

The appliance will modulate its output from 9.2 kW (31,400 Btu/h) to the set output of 24 kW (82,000 Btu/h) over a period of about two minutes.

Check the system to ensure that all the radiators are heating up evenly.

Shut down all but one of the radiators and observe the burner pressure fall. Open all of the radiator valves and check that the burner pressure rises. Balance the system so that the required temperature difference across the central heating flow and return pipes is obtained. See Table 3

Adjust the central heating by-pass valve until the same temperature difference is obtained. See Fig 23. This should be carried out with only a single radiator operating. If thermostatic radiator valves are fitted then one radiator should be left uncontrolled. The bypass valve should never be fully closed.

If the heat load is in excess of 16.1 kW (54,900 Btu/h) then reset the controls to the maximum of 24 kW (82,000 Btu/h) by carefully rotating the adjustment potentiometer to its maximum position. Access is gained to the adjustment point by lowering the electrical control box. Indicate the new setting pressure on the data plate.

Set the room thermostat to minimum and check that the burner goes out. Reset the room thermostat to maximum and the burner will relight and follow the normal operating procedure.

Set the Operating Switch (or Programmer) to OFF.

Turn off the gas service cock and the electrical supply to the appliance.

Drain the system while the appliance is still hot.

Refill, vent and, with a sealed system, re-pressurise as described in Section 12.2.

Domestic Hot Water and Central Heating

Turn on the electricity supply to the appliance and open the gas supply cock at the appliance. Light the appliance as described in the preceding notes.

Set the Operating Switch (or Programmer) to **HEATING & WATER**. If a programmer is fitted, set the domestic hot water to **Continuous** or **24Hrs** and the central heating to **ON**. The burner will light and heat will pass into the system. Turn on a hot water tap and check that fully heated hot water is discharged from the tap.

Close the tap and the burner will go off. The appliance will then return to the central heating mode and automatically balance with the system requirements.

Set the Operating Switch (or Programmer) to **OFF** and the burner will go out.

12. 5 COMPLETION OF COMMISSIONING

Disconnect the pressure gauge and tighten the test point screw.

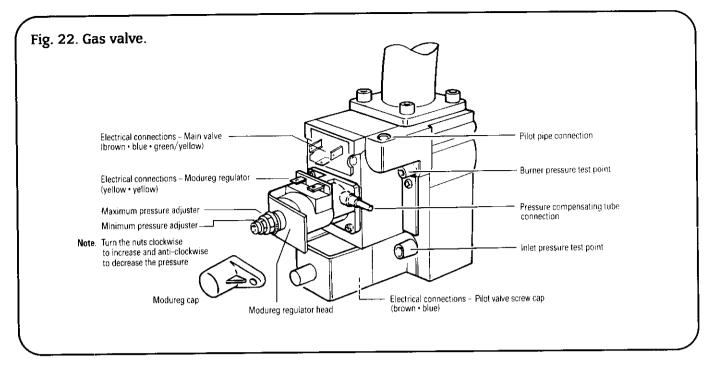
Restart the appliance and check for gas soundness around the test point screw.

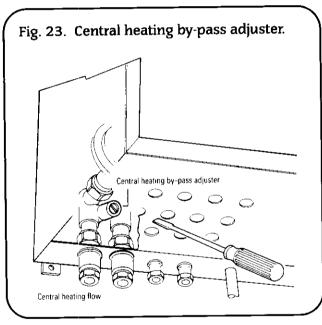
Refit the cabinet front panel.

If the appliance is being passed over to the user immediately, refer to Section 13 – Instructions to the User and set the controls to the user's requirements.

If the appliance is to be left inoperative, check that the Operating Switch is set to **OFF**. Turn off the gas service cock and switch off the electricity supply.

If there is any possibility of the appliance and system being left inoperative during frosty conditions, drain the appliance and system. For short inoperative periods leave the boiler under the control of a frost thermostat or operating continuously under the control of a room thermostat set at 6°C.


13. Instructions To The User


13.1 Tell the user how to operate the appliance and hand over the Users Instructions leaflet.

13.2 Tell the user what to do if the the heating system is not to be used in frosty weather.

13.3 Tell the user the sealed system set pressure if applicable.

13.4 Tell the user of the importance of regular servicing. Worcester Heat Systems Ltd offer a comprehensive maintenance contract.

13.5 Set the system controls to the user's requirements.

13.6 If an external programmer has been fitted which has a programmable domestic hot water facility then it is suggested that this be set to **Continuous** or the equivalent.

14. Inspection and Servicing

14.1 To ensure continued efficient operation of the appliance it must be checked and serviced as necessary at regular intervals. The frequency of servicing will depend upon the particular installation conditions and usage, but once per year should

generally be adequate. The extent of the service required by the appliance is determined by the operating condition of the appliance when tested by fully qualified engineers.

Any service work must be carried out by competent engineers such as British Gas or Corgi registered personnel.

14. 2 PRE-SERVICE INSPECTION

Check that the flue terminal and the terminal guard, (if fitted), are clear

If the appliance is in a compartment, check that the ventilation openings in the compartment door or walls are clear. See Section 6 – Air Supply.

Check the system and remake any joints or fittings which show signs of leakage.

Refill, vent and, with a sealed system, re-pressurise as described in Section 12. 2.

Operate the appliance and the system taking note of any faults.

Warning

Disconnect the electrical supply at the mains and turn off the gas supply at the gas service cock on the appliance before servicing. See Fig. 3.

After completing the service always test for gas soundness as indicated in BS 6891.

14. 3 DISMANTLE THE APPLIANCE

To carry out a full and comprehensive service of the appliance remove the following parts to gain access to the components which need to be checked or serviced.

- (a) Cabinet Front Panel. Remove by lifting off the supports.
- **(b) Inner Casing Cover.** Remove the cabinet front panel. Unscrew the four screws securing the cover to the casing and lift off. See Fig 19.
- (c) Facia Panel. Check that the electricity supply to the appliance is turned off. Remove the cabinet front panel as described in Section 14.3(a). Unscrew the two upper screws as shown in Fig 19 and lower the facia taking care not to damage the pressure gauge capillary tube or electrical connections.

- (d) Control Box. Remove the cabinet front panel as described in Section 14.3(a). Unscrew the two screws as shown in Fig. 19, Support the assembly and allow it to hinge down into the servicing position. Make sure no damage is done to the pressure gauge capillary tube or electrical wires.
- **(e) Flue Hood.** Unscrew the two screws fixing the flue hood and slide the flue hood assembly from the appliance. See Fig 24. When refitting the hood ensure that the rear return passes under the lip at the rear of the combustion chamber.
- (f) Combustion Chamber Cover. Remove the the inner casing cover. Unscrew the six screws securing the cover and remove the cover. See Fig 24.
- (g) Main Burner Assembly. Remove the combustion chamber cover. Unscrew the pilot fixing screws. Pull off the electrode lead and pull out the electrode. Undo the pilot pipe and remove the pilot burner. See Fig 25. Unscrew the two screws and remove the burner assembly by lifting the front of the burner and pulling forward. See Fig 26.

14. 4 SERVICE OF COMPONENTS

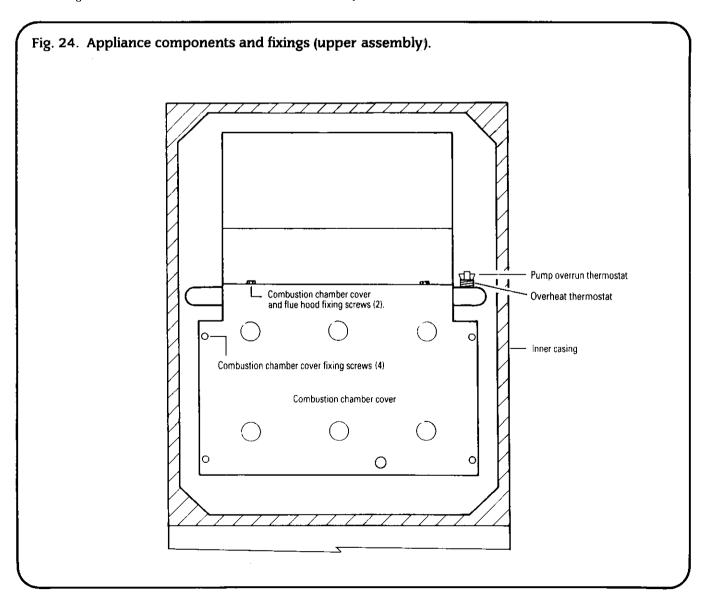
Clean the Main Burner. Brush the blade tops and mixing tube with a soft brush and check that all the flame ports are clear. Remove any blockages with a non-metallic brush. Inspect the injector and clean with a soft brush. Replace the injector if it appears damaged. Do not use a wire brush or anything likely to cause damage.

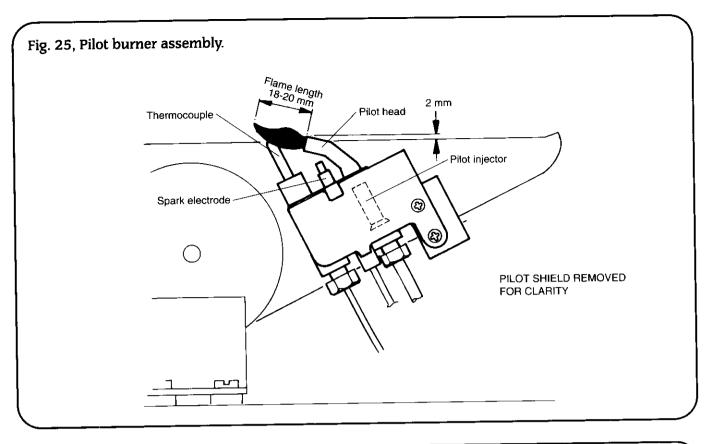
Clean the Pilot Burner Assembly. Brush with a soft brush. Remove the pilot injector and clean by rinsing it in warm water. Replace the spark electrode if it appears damaged. Fit the electrode lead before replacing the electrode. When reassembling see Fig. 25 for correct positioning of the spark electrode.

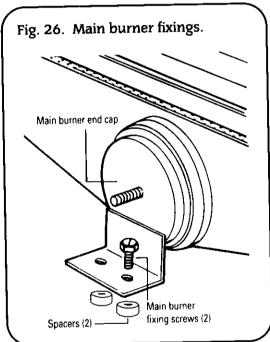
Clean the Gas to Water Heat Exchanger. Cover the main burner manifold with a cloth. Clean the heat exchanger using a soft brush. Remove the deposits from the bottom of the combustion chamber. Do not distort any of the blades.

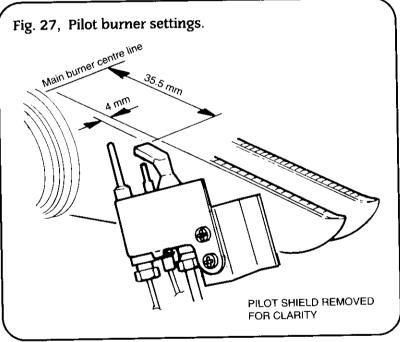
Combustion Chamber Insulation. Examine and replace any pads that are damaged. See Section 15.6.

Controls. Remove any dust or deposits using a soft non-metallic brush. Take care not to mishandle any component connections.


Reassemble the appliance in the reverse order.


Check that all components are in place and correctly fixed. Leave the cabinet front panel to be fitted after checking the operation of the appliance.


14. 5 TEST THE APPLIANCE


On completion of the service and reassembly of the appliance, check for gas soundness and the correct operation of the appliance as described in Section 12 – Commissioning.

Refit the cabinet front panel and reset the controls to the users requirements.

15. Replacement of Parts

15.1 WARNING.

Switch off the electricity and gas supplies before replacing any components. After the replacement of any components, check for gas soundness where relevant and carry out functional checks as described in Section 12 – Commissioning

15.2 COMPONENT ACCESS

To replace components it is necessary to remove one or more sections of the cabinet and cover plates within the appliance as described in Section 14.3. The facia panel and control box may also need to be lowered as described in Section 14.3

15.3 DRAINING THE APPLIANCE

Check that the eLectricity supply to the appliance is turned off. Before removing any component holding water it is important that as much water as possible is removed from the appliance.

- (a) Central Heating Circuit. Turn off the central heating flow and return valves at the appliance. See Fig 3. Fit a tube to the drain tap on the Water to Water heat exchanger and open the tap about one turn. See Fig 30. Close the drain tap when the flow has stopped. Some water will remain in the expansion vessel, pump, diverter valve and Gas to Water heat exchanger and extra care must be taken when removing these components.
- (b) Domestic Hot Water Circuit. Turn off the mains cold supply valve at the appliance and open the lowest hot water tap. See Fig 3. A quantity of water will remain in the Water to Water heat exchanger and the diverter valve and extra care must be taken when removing these components.

15.4 COMPONENT REPLACEMENT

1. Automatic Air Vent. (Sealed system installation only). See Fig 16.

Remove the inner casing cover and flue hood assembly as described in Section 14.3(b) and (e).

Drain the central heating circuit as described in Section 15.3(a). Unscrew the assembly.

Fit the replacement assembly.

Open the valves and fill and re-pressurise the system as described in Section 12.2.

2. Overheat Thermostat, See Fig. 24

Check that the electricity supply to the appliance is turned off. Remove the inner casing cover as described in Section 14.3(b). Lower the facia as described in Section 14.3(c).

Remove the two M3 screws holding the overheat thermostat to the heat exchanger. Unscrew the overheat leads from the gas valve. Push the grommet through the hole in the casing and thread the lead assembly through the hole. Fit the replacement overheat thermostat in reverse order ensuring a layer of heat sink compound is under the thermostat head.

3. Gas to Water Heat Exchanger. See Figs 16, 28 and 29. Check that the electricity supply to the appliance is turned off. Drain the central heating circuit as described in Section 15.3(a).

Remove the flue hood assembly, pump overrun thermostat.

overheat thermostat and main burner as described in Sections 14.3(e, f, and g), 15.4(4) and 15.4(6).

Unscrew the flow connectors at the heat exchanger and at the bottom left of the inner casing and move the heat exchanger to one side

Unscrew the return connection at the bottom left of the inner casing and manoeuvre the heat exchanger from the casing. Carefully remove the left hand insulation pad and left hand combustion chamber side panel.

Transfer the return pipe to the new heat exchanger leaving the connector nut loose.

Fit the replacement heat exchanger in the reverse order ensuring all the fibre washers are in place and a layer of heat sink compound is on both the thermostats. Align the return pipe and tighten the connection. Refit the side panel and the insulation

Open the valves and fill and re-pressurise the system as described in Section 12.2.

4. Pump Overrun Thermostat. See Figs 9 and 24

Check that the electricity supply to the appliance is turned off.

Remove the inner casing cover and flue hood assembly as described in Section 14.3(b) and (e).

Carefully remove the three wires from their connections and make note of their positions. Loosen the rear M4 screw securing the thermostat to its mounting plate on the Gas to Water heat exchanger. Remove the front screw and thermostat.

Fit the replacement thermostat ensuring a layer of heat sink compound is between the faces.

5. Combustion Chamber Insulation. See Fig 29

Check that the electricity supply to the appliance is turned off.

Drain the central heating circuit as described in Section 15.3(a).

Remove the inner casing cover, flue hood assembly, and Gas to Water heat exchanger as described in Sections 14.3(b, and e), and 15.4.(3), Remove the fibre insulation pads from the combustion chamber side, rear, and front sections.

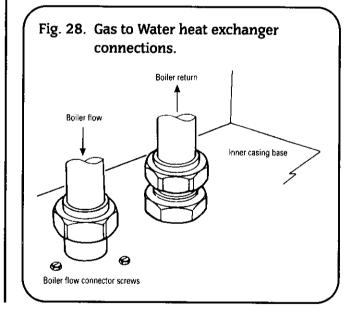
Fit the replacement pads in the reverse order taking care not to damage them.

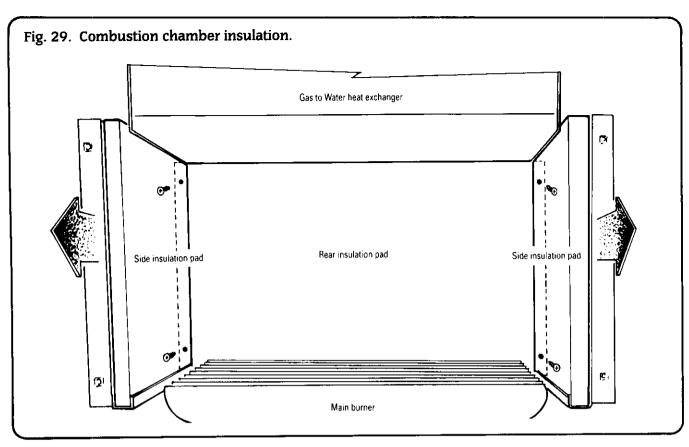
Open the valves, fill and re-pressurise the system as described in Section 12.2.

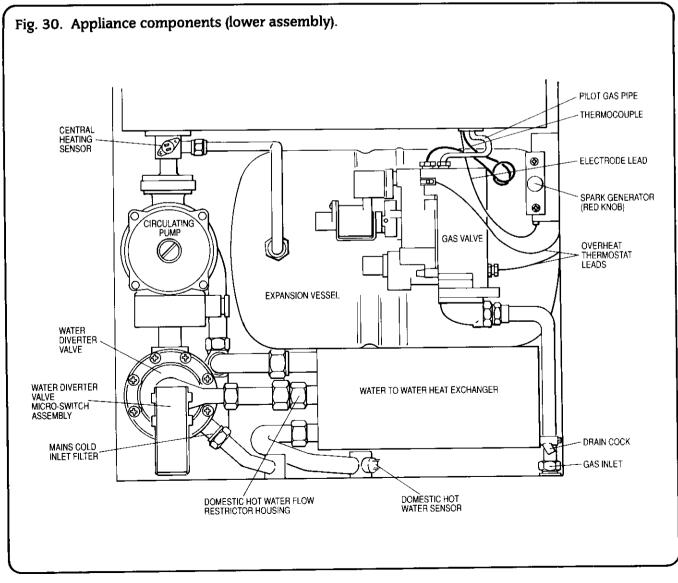
6. Main Burner. See Fig. 26

Check that the electricity supply to the appliance is turned off. Remove the burner assembly as described in Section 14.3(g).

Fit the replacement burner in the reverse order taking care not to bend the pilot bracket on the main burner.


7. Pilot Burner, See Figs. 25 and 27


Unscrew the two screws and remove the pilot burner and pilot shield from the main burner.


Remove the spark electrode cable and pull out the electrode. Undo the pilot pipe, unscrew and remove the thermocouple.

Fit the replacement burner in the reverse order. Fit the electrode lead before replacing the electrode. Check the pilot burner settings as shown in Fig. 27.

Make sure the pilot shield is in place.

8. Main Burner Injector. See Fig. 25

Remove the main burner as described in Section 15.4(6).

Unscrew the brass injector at the back of the combustion chamber

Fit the replacement injector in the reverse order.

9. Spark Electrode. See Figs. 25 and 27

Check that the electricity supply to the appliance is turned off.

Remove the pilot burner assembly as described in Sections 14.3(b) and 15.7.

Pull the spark electrode out of the clip.

Fit the replacement electrode in the reverse order, checking that the spark gap is 4 to 5 mm. Fit the electrode lead before replacing the electrode.

10. Pilot Burner Injector. See Fig 25

Check that the electricity supply to the appliance is turned off.

Remove the inner casing cover and pilot burner assembly as described in Sections 14.3(b) and 15.7. Remove the injector (a push fit inside the pilot assembly).

Fit the replacement injector in the reverse order.

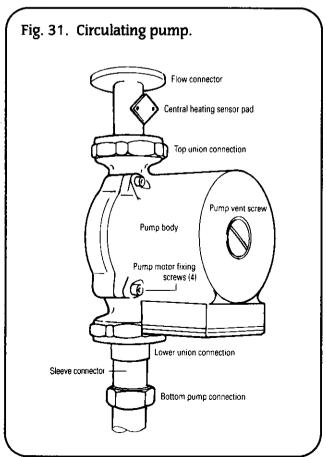
11. Thermocouple. See Figs 25 and 27.

Check that the electricity supply to the appliance is turned off. Remove the inner casing cover and pilot burner assembly as described in Sections 14.3(b) and 15.7.

Unscrew the thermocouple at the gas valve. Remove the pilot pipe cover plate and thread the thermocouple through the hole in the casing. Fit replacement thermocouple in reverse order.

12. Spark Electrode Lead. See Fig. 25

Check that the electricity supply to the appliance is turned off.


Remove the inner casing cover as described in Section 14.3(b).

Carefully pull the lead from the spark electrode and withdraw from the inner casing.

Fit the replacement lead in the reverse order. Loosen the pilot assembly to refit the lead to the electrode.

13. Gas Valve. See Fig. 22.

Check that the electricity and gas supplies to the appliance are turned off.

Hang the control box assembly in the servicing position as described in Section 14.3(d).

Disconnect the pilot pipe. Unscrew and remove the black plastic plug. Carefully pull off the two yellow wires from their terminals. Remove the thermocouple connection and the white leads from the gas valve. Remove the eight screws securing the valve to the pipework and remove the valve from the appliance.

Fit the replacement gas valve in the reverse order ensuring the sealing washers are correctly fitted.

Turn on the gas supply and check for soundness.

To replace the Modureg head only.

Pull off the electrical connections. Unscrew the two screws securing the Modureg head to the main body and remove.

Fit the new Modureg head (Honeywell 3061) in the reverse order ensuring that the gasket is in the correct position.

To set the burner pressure. See Fig. 22.

The minimum and maximum burner pressures must be set after a new gas control has been fitted.

Follow the procedure described in Section 12.4 – Appliance Operation.

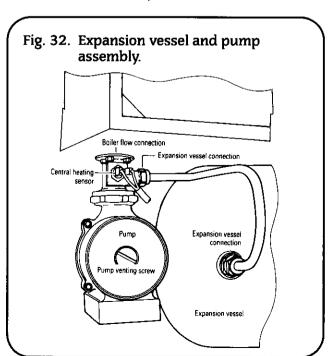
The maximum burner pressure must be set first, as any adjustment of the maximum pressure influences the minimum pressure setting.

Remove the the fixing screw and remove the the Modureg cover.

The Modureg cap must be replaced immediately the adjustments have been made to ensure the proper operation of the gas control.

Start the appliance in the domestic hot water mode as described in Section 12.4 – Appliance Operation.

Adjust the maximum pressure adjustment nut to give a burner pressure of 14.7 mbar. See Fig 22.


Switch off the appliance and turn off the electricity supply. Remove a lead to the Modureg head.

Switch on the electricity supply to the appliance and re-light in the domestic hot water mode. The burner pressure will remain at the minimum setting.

Turn the minimum pressure adjustment screw until the burner pressure is 2.8 mbar. See Fig.22.

Switch off the appliance and turn off the electricity supply. Refit the lead to the Modureg head.

It should not be necessary to alter the central heating potentiometer setting when the gas control is replaced and the minimum and maximum burner pressures are set.

14. Central Heating Sensor. See Fig. 30

Check that the electricity supply to the appliance is turned off. Carefully pull off the two leads from the sensor. Loosen the two M3 screws securing the sensor to the fitting and remove the sensor.

Fit the replacement sensor with a layer of heat sink compound between the faces. Refit the leads.

15. Domestic Hot Water Sensor. See Fig. 30

Check that the electricity supply to the appliance is turned off.

Hang the control box assembly in the servicing position as described in Section 14.3(d).

Carefully pull off the two leads from the sensor. Loosen the two M3 screws holding the sensor to the fitting and remove the sensor

Fit the replacement sensor in the reverse order ensuring a layer of heat sink compound is between the faces. Refit the leads.

16. Circulating Pump. See Fig 31

Check that the electricity supply to the appliance is turned off.

Drain the central heating circuit as described in Section 15.3(a).

Hang the control box assembly in the servicing position as described in Section 14.3(d).

Undo the two union nuts and remove the pump from the pipework. Support the pump and remove the electrical cover. Disconnect the electrical wires taking note of their positions.

Fit the replacement pump in the reverse order using new sealing washers. Ease back the sleeved connector to allow the fitting of the bottom washer.

Alternatively replace the pump head only by removing the four Allen screws.

Open the valves and fill and re-pressurise the system as described in Section 12.2

Note. The direction of flow should be downwards. The speed should always be set to maximum.

17. Expansion Vessel. See Fig 32

Drain the central heating circuit as described in Section 15.3(a).

Hang the control box assembly in the servicing position as described in Section 14.3(d).

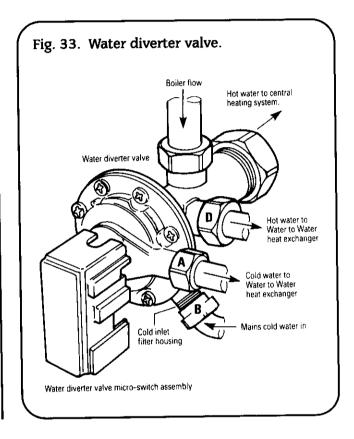
Remove the gas valve as described in Section 15.13.

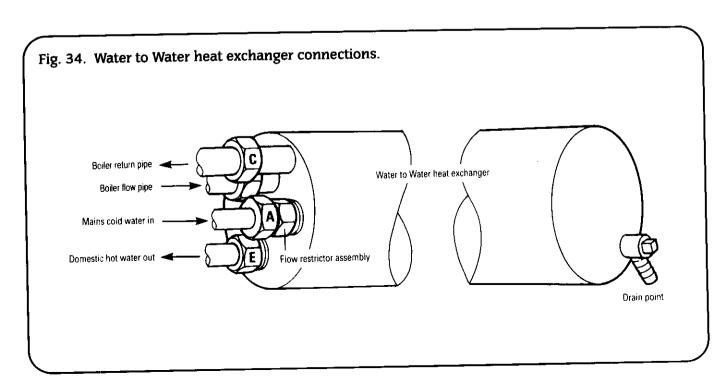
Undo the expansion vessel connection at the boiler flow connection and remove the vessel.

Fit the replacement vessel in the reverse order.

Open the valves and fill and re-pressurise the system as described in Section 12.2

18. Pressure Relief Valve. See Fig 21


Drain the central heating circuit as described in Section 15.3(a).


Lower the control box assembly as described in Section 14.3(d)

Undo the discharge pipe connection and unscrew the valve taking care not to distort the pipework.

Fit the replacement valve using a suitable thread sealing compound. Reconnect the discharge pipe.

Open the valves and fill and re-pressurise the system as described in Section 12.2

19. Water Diverting Valve Micro Switch Assembly. See Fig 33. Check that the electricity supply to the appliance is turned off.

Lower the control box assembly as described in Section 14.3(d).

Using a pair of fine nosed pliers, pull the circlip off and remove the micro switch assembly from the valve. Lower the facia as described in Section 14.3(c). Carefully pull off the Molex connection from terminal X3 on the driver board. Remove the strain relief bush to withdraw the switch and lead assembly from the appliance.

Fit the replacement micro switch assembly in the reverse order.

20. Water Diverting Valve. See Fig 33

Check that the electricity supply to the appliance is turned off. Drain the central heating and domestic hot water circuits as described in Sections 15.3(a and b). Hang the control box assembly in the servicing position as described in Section 14.3.(d).

Remove the micro switch assembly as described in Section 15. 4. 19.

Undo all the water connections to the valve and remove from the appliance.

Fit the replacement valve in the reverse order ensuring that the filter and all fibre washers are in place.

Open the valves and fill and re-pressurise the system as described in Section 12.2

22. Domestic Hot Water Flow Restrictor. See Fig 30

Check that the electricity supply to the appliance is turned off.

Drain the domestic hot water circuit as described in Section 15.3(b).

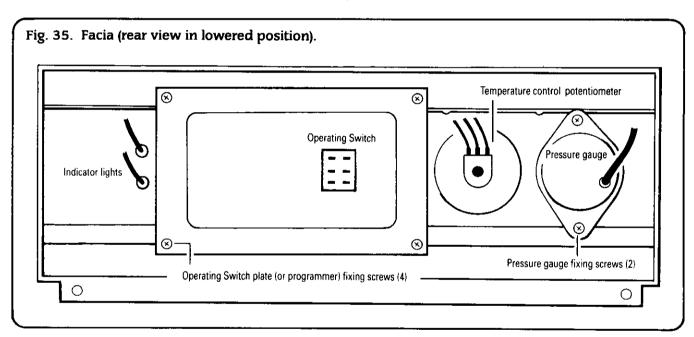
Hang the control box assembly in the servicing position as described in Section 14.3(d).

Undo the water connection **A** and remove the fitting. The plastic flow restrictor is located within the brass housing.

Fit the replacement flow restrictor and reassemble in the reverse order ensuring the fibre washers are in place.

23. Pressure Gauge. See Fig 35

Check that the electricity supply to the appliance is turned off.


Drain the central heating circuit as described in Section 15.3(a). Lower the facia panel as described in Section 14.3(c).

Remove the two screws securing the gauge to the facia panel. Hang the control box assembly in the servicing position as described in Section 14.3(d).

Disconnect the capillary at the pressure relief valve.

Fit the replacement gauge in the reverse order ensuring the fibre washer is in place.

Open the valves and fill and re-pressurise the system as described in Section 12.2

21. Water to Water Heat Exchanger. See Figs. 3, 30, 33 & 34. Check that the electricity supply to the appliance is turned off.

Drain the central heating and domestic hot water circuits as described in Sections 15.3(a and b).

Loosen the mains cold water inlet connection and locknut at the appliance. See Fig. 3.

Hang the control box assembly in the servicing position as described in Section 14.3(d).

Undo connection A and remove the coupling.

Undo connection **B** and move the pipe to one side. Undo connections **C**, **D** and **E**. Loosen the two screws at the right hand fixing bracket.

Protect the control box and carefully remove the heat exchanger as some water remains.

Transfer the boiler flow pipe (removed with the old heat exchanger) to the new heat exchanger using a new fibre washer...

Fit the replacement heat exchanger in the reverse order ensuring all the fibre washers are in place.

Open the valves and fill and re-pressurise the system as described in Section 12.2

24. Operating Switch. See Fig. 35

Check that the electricity supply to the appliance is turned off.

Lower the facia panel as described in Section 14.3(c).

Remove the leads from the rear of the switch making note of their positions.

Squeeze together the two plastic retaining lugs to remove the switch from the facia.

Snap in the replacement switch and reconnect the leads. Refer to the wiring diagram, Fig. 8

25. Temperature Control Potentiometer. See Fig 35

Check that the electricity supply to the appliance is turned off.

Lower the facia as described in Section 14.3(c).

Pull the knob off the spindle. Unscrew the locknut and remove the potentiometer from the facia panel. Remove the Molex plug from terminal X1 on the driver board.

Fit the replacement potentiometer in the reverse order.

26. Main Driver Board. See Fig 8

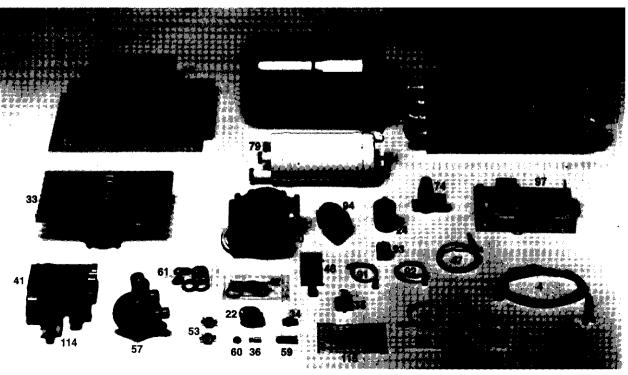
Check that the electricity supply to the appliance is turned off. Lower the facia panel as described in Section 14.3(c)

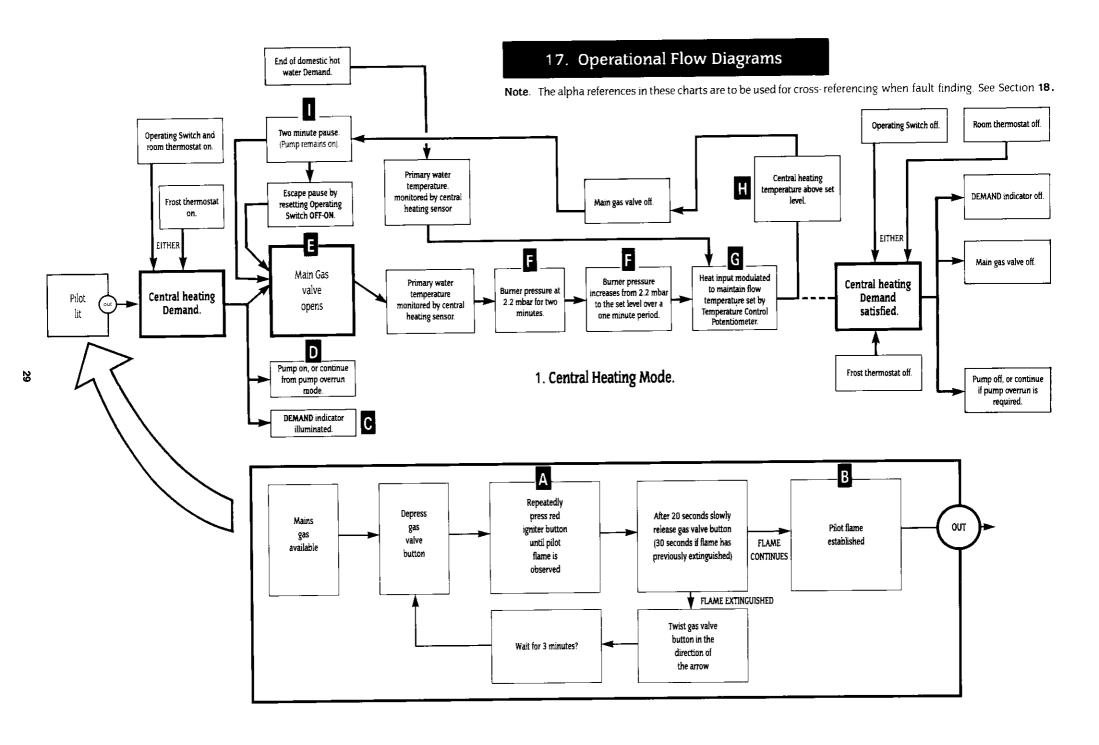
Carefully pull off all the Molex connectors. Disconnect the room and frost thermostat connections (if fitted) from terminal X4. Remove the Operating Switch (or programmer) plug from terminal X10. Disconnect the mains supply leads at terminal X7. Release the plastic catch in each corner of the driver board and pull forward off the control panel.

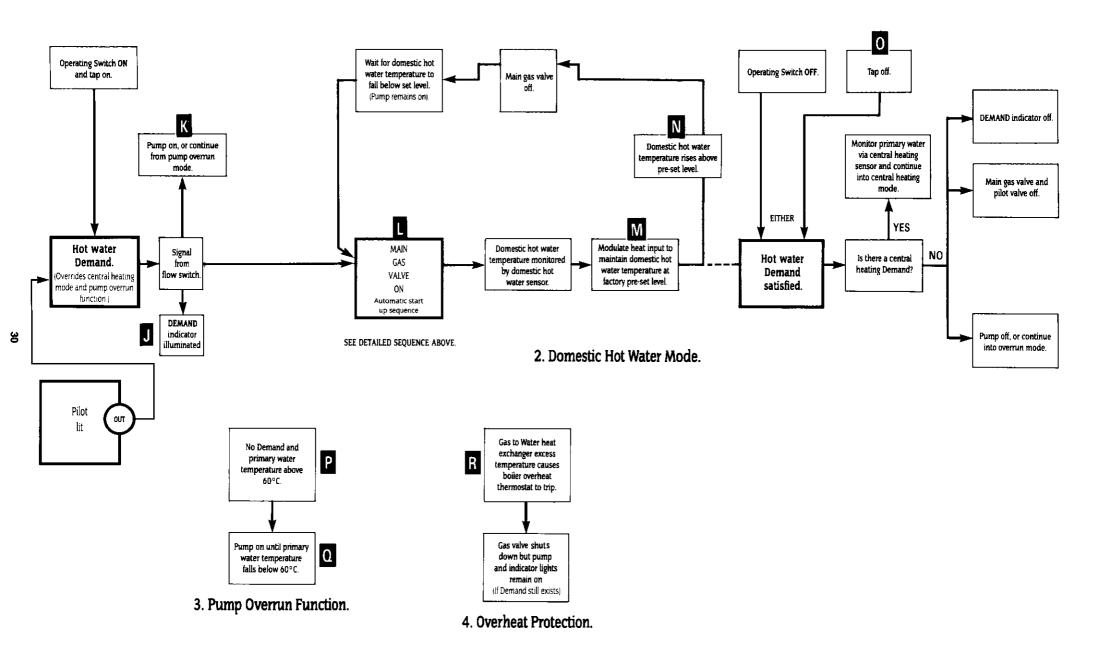
Fit the replacement board in the reverse order ensuring it is pushed firmly onto the four posts and clicks into place.

Refit the facia panel and hang the control box assembly in the servicing position as described in Section 14.3 (d).

Set the central heating operating pressure to maximum by turning the central heating potentiometer anti-clockwise as accessed through an opening in the rear of the control box.

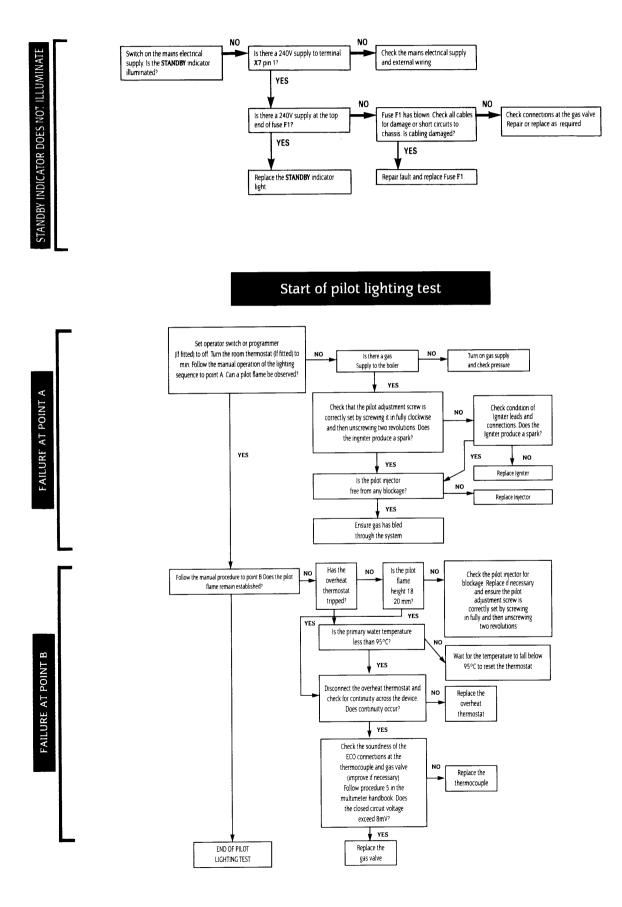

The adjustment is made using a thin flat-bladed screwdriver.

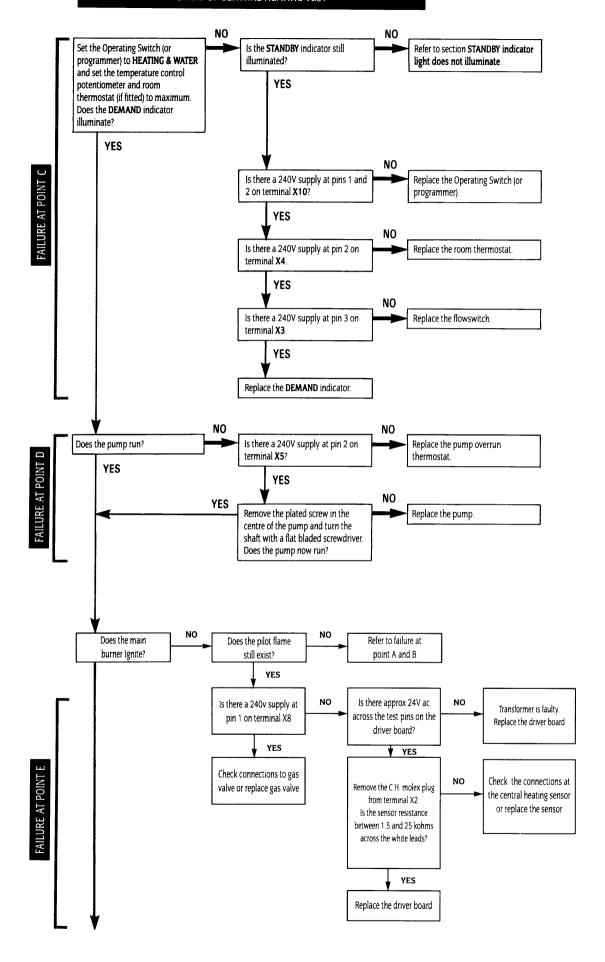

27. Piezo Spark Generator

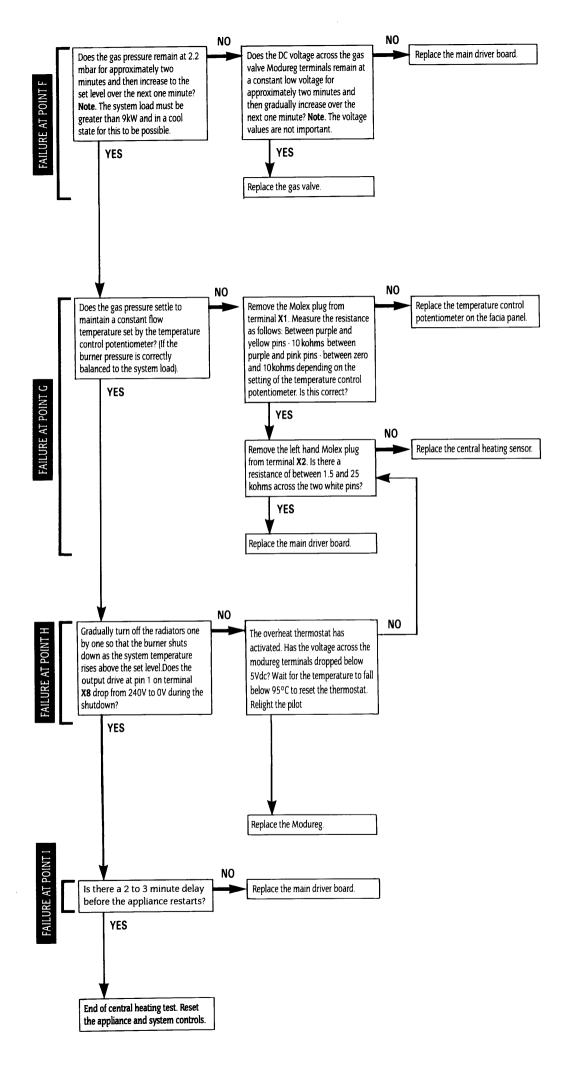

Remove the cabinet front panel as described in Section 14.3(a). Pull the spark electrode lead from the connection on the spark generator. Unscrew the two M5 screws and remove the spark generator from the appliance. Fit replacement spark generator in reverse order.

16. Short Parts List

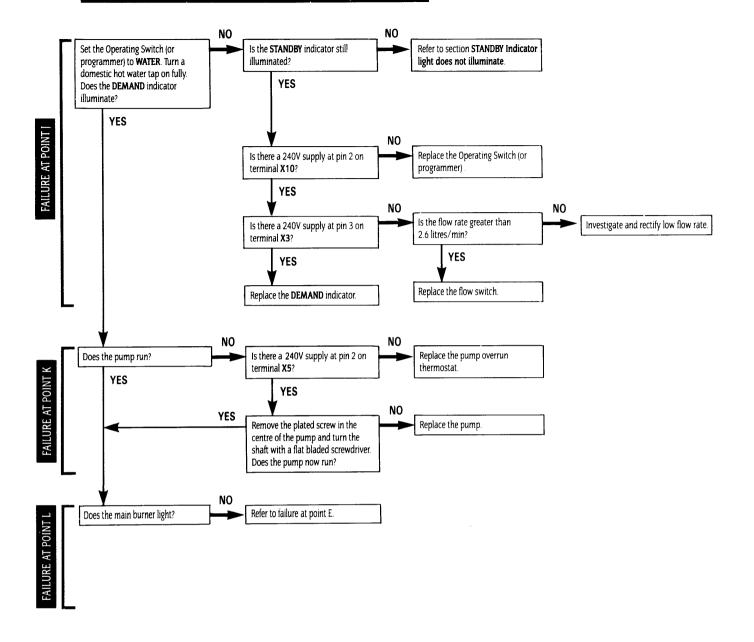
Key No.	GC No.	Part	Manufacturer's Reference	No.	WHS Part No.
41	378 581	Gas Valve	Honeywell-V4600N3061	1	ZAGAS181
114	378 585	Modureg Head (Gas Valve)	Honeywell-V7335A3008	1	ZAGAS185
33	378 025	Main Burner	Aeromatic-AC 23/053576	1	ZAGAS154
34	379 040	Main Burner Injector	Stereomatic 4.4mm Dia. Type 7	1	ZAGAS163
35	379 673	Pilot Burner	Honeywell-Q385A 2010	1	ZBGAS092
36	382 850	Pilot Burner Injector	Honeywell-45.004, 108-001 38/36A	1	ZBGAS016
37	386 575	Spark Electrode	Honeywell-45900413004	1	ZBGAS093
38	324 887	Spark Electrode Lead	Vernitron 0.7 PTFE	1	ZBGAS025
21	299 150	Gas to Water Heat Exchanger	Giannoni-PR 20/321	1	ZAGAS165
24	379 419	Automatic Air Vent	Intermes-02, 50, 010	1	ZMMIS055
53	299 199	Sensor and paste	Elmwood-6655-9428-4	2	SPK0039
94	299 202	System Pressure Gauge (with Washer)	Cewal	1	SPK0040
74	386 789	Pressure Relief Valve	Caleffi-3141, 3bar	1	ZCVLV018
50	378 034	Circulating Pump	Grundfos-UPS 15-60, 120CL, NOCL 50526613	1	ZAMAJ198
70	378 027	Expansion Vessel (Sealed System)	Inter Albion-MIS082/240	1	ZMMIS082
79	371 537	Water to Water Heat Exchanger		1	SSA6161/1
57	379 216	Diverter Valve	Giannoni-D2040	1	ZAGAS166
97	379 730	Driver Board	Honeywell-W4115B, 1226	1	ZAGAS228
90	386 227	CH Temperature Control Potentiometer	Omeg-OW20BU	1	SSAHAR002
93	386 778	Operating Switch	Arrow-200400E839AA	1	ZDELE237
10	299 151	Combustion Chamber Insulation (Complete)		1	SPK0033
122	371 539	Programmer Kit (Optional)	WHS Single Channel Grey 490 488	1	ZAMAJ164
42	371 540	Gasket Pack – Gas		1	SPK0022
61	371 541	Gasket Pack Water		1	SPK0023
60	379 215	DHW Flow Restrictor	Type E, White 8 litres/min. (± 10%)	1	ZBUNC138
91	371 524	Indicator Light - DEMAND	Neon (Green) – complete with plug IMO Ref. N19L R/S-Green	1	SSAHAR081
92	371 525	Indicator Light – POWER ON	Neon (Amber) – complete with plug IMO Ref. N19L R/S-Amber	1	SSAHAR082
22	299 277	Pump Overrun Thermostat plus paste	Thermodisc 60T13-500103	1	SPK0088
59	378 416	Filter	MPMV 3326 Stainless Steel	1	ZBUNC229
115	299 032	Fuse Pack		1	SPK0024
40	390 210	Thermocouple	Honeywell Q309A2747	1	ZBGAS035
48	393 652	Spark Generator	Vernitron 0207	1	ZBGAS010
4	299 152	Limit Thermostat	Elmwood 2455RC, c/w lead	1	SSAHAR013

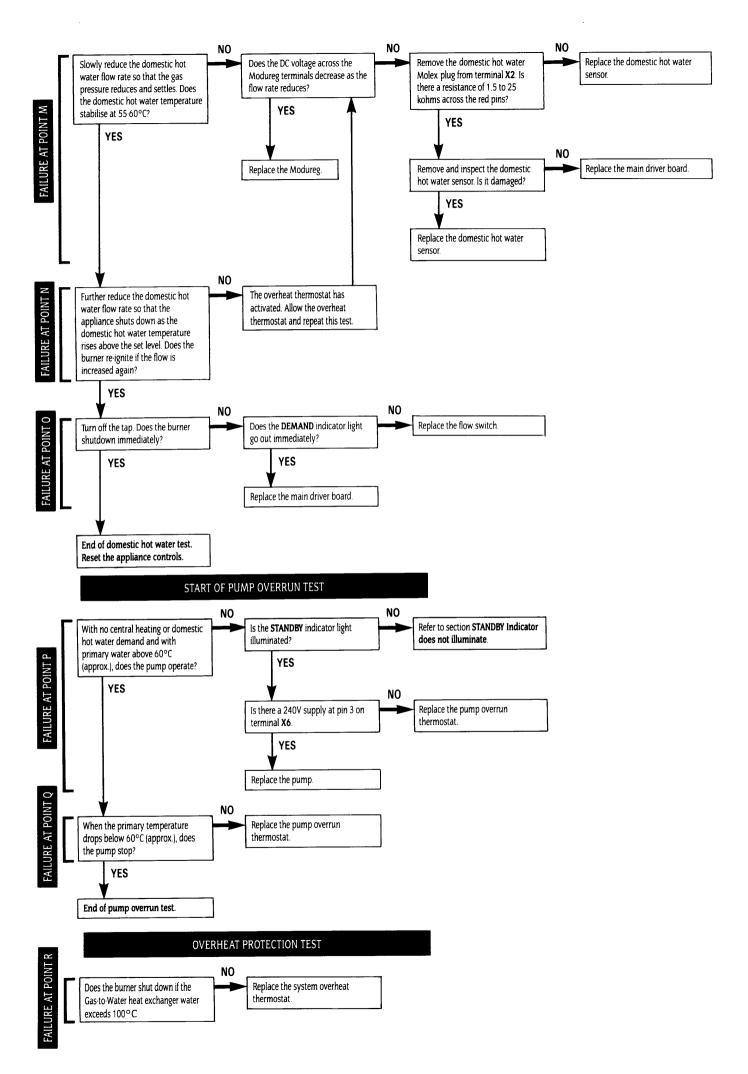



18. Fault Finding


This Fault Finding Chart is to be used in conjunction with the Operational Flow Diagrams in Section 17. To find the fault, locate the point on the flow diagram at which the appliance has failed, eg, letter B. Then read the corresponding section in the fault finding chart, eg. Failure at point B. Note: Each section assumes that the appliance operates correctly up to that point.

Notes. 1. All voltage measurements are with respect to neutral unless otherwise stated. 2. Before changing any component indicated in the chart, it is essential that the associated wiring is checked for continuity, condition and correct routing. 3. Preliminary electrical system checks are the first electrical checks to be carried out during a fault finding procedure. On completion of the Service/Fault Finding task which has required the breaking and remaking of electrical connections, check—(a), EARTH CONTINUITY, (b), SHORT CIRCUIT CHECK, (c), POLARITY and (d), RESISTANCE TO EARTH.




START OF CENTRAL HEATING TEST

START OF DOMESTIC HOT WATER TEST

Worcester Heat Systems Limited, Cotswold Way, Warndon, Worcester WR4 9SW. Telephone: (01905) 754624 Fax: (01905) 754619